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right-hand side of eq 5, 282; found, 280 ± 57). 31P NMR ob­
servations are also consistent with the equilibrium proposed 
in eq 5.15 The absence of metal hydrides is demonstrated by 
reaction of 3 with anhydrous HCl; 1- and 2-butenes are the 
only volatile products—no hydrogen is formed. Treatment of 
3 with dry oxygen liberates butadiene. 3 reacts reversibly with 
PMe3 at low temperatures. 31P NMR spectra of 3 and excess 
PMe3 (5 equiv/1 equiv of Zr) at -80 0C in toluene-^s show 
the presence of free dmpe (0.5 equiv/1 equiv of Zr) and an 
ABX pattern,16 consistent with the formation of (C4H6)2-
Zr(dmpe)(PMe3) as shown in eq 6. That the interaction is 

3 + 2PMe1, 5=f dmpe + 2(\_/)2Zr(dmpeXPMe;i) (6) 

reversible is shown by precipitation of the less soluble 3 on 
addition of hexane at —80 0C. Warming these solutions to 
room temperature results in irreversible decomposition. 

In arene solvents, 3 reacts rapidly with hydrogen, forming 
butane and brown solutions.17 These solutions catalyze the 
hydrogenation of olefins and alkynes under mild conditions. 
Thus, 1 -octene, cyclohexene, and 2-pentyne are hydrogenated 
at moderate rates.18 The trisubstituted olefin 2-methyl-2-
butene is hydrogenated, at best, very slowly. 31P NMR studies 
indicate that the toluene and benzene solutions formed on 
treatment of 3 with Wj are complex.'9 

This work has two major ramifications: (1) formally di- and 
zerovalent zirconium complexes with electron-donating ligands 
are stable, particularly in the presence of 7r-accepting groups;20 

and (2) as shown by eq 3 and as suggested by the use of 3 as a 
hydrogenation catalyst, the Zr(IV) -»• Zr(II) and, possibly, 
Zr(II) -* Zr(O) redox couples are not so endothermic that 
catalytic processes involving them are implausible. 
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Total Synthesis of 
a-Amino-3-chloro-4,5-dihydro-5-isoxazoleacetic Acid 
(AT-125), an Antitumor Antibiotic 

Sir: 

Recently Martin et al.1 described the isolation and structure 
of a novel antitumor antibiotic, («S, 5S)-a-amino-3-chloro-
4,5-dihydro-5-isoxazoleacetic acid (1, AT-125). This material, 
isolated from Streptomyces sviceus, significantly increased 
the life span of tumor (L-1210 or P3 8 8) bearing mice2 and, of 
even greater interest, it significantly increased the life span of 
immune deficient mice implanted with a solid human mam­
mary tumor.3 The biological activity of this material and its 
novel structure have already elicited a report by Baldwin et al. 
on an approach to its synthesis which produced nonstereo-
specifically a methylated analogue.4 We report here a stereo­
selective, total synthesis of the racemic and optically pure 
isomers of AT-125. 

In planning the synthesis we decided to pursue a path to 
AT-125 through derivatives of the known amino acid tricho-
lomic acid (2).5 In order to obtain relay material for such a 
route, AT-125 was hydrolyzed with 2 N NaOH to tricholomic 
acid identical by TLC and NMR with an authentic sample.6 

The hydrolyzed material was converted to its phthalimide 
methyl ester 3 (A^-carboethoxy phthalimide7 followed by di-
azomethane) which we found could be chlorinated in 65-70% 
yields with (Me2N)3PCl2 in THF8-9 to produce a material 
identical with the phthalimide methyl ester of AT-125. En­
couraged by these results we turned our attention toward the 
synthesis of tricholomic acid or a suitably protected derivative 
thereof. 

Since the synthesis of tricholomic acid previously described 
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by Kamiya and co-workers5b was not stereocontrolled at the 
early stages in generating a hydroxyglutamic acid backbone, 
we chose instead to generate the desired functionality through 
the opening of a cis epoxide. Thus, cyclopentadiene mono-
epoxide10 was treated with methanol and ammonia to produce 
rra«5-3-amino-3-hydroxycyclopentene (4,1 la mp 47-50 0C), 
an extremely water-soluble material which could readily be 
isolated and purified as its p-toluenesulfonate salt (mp 
180-182 0C).13 The amine 4 was then resolved by first re­
moving the isomer corresponding to the unnatural configu­
ration by crystallization of the deoxycholate salt from methanol 
(mp 195-197 0C). Treatment of the regenerated amine from 
the mother liquors with L-(+)-tartaric acid and crystallization 
from ethanol produced the natural antipode in 70-80% theo­
retical yield (mp 86.5-88.5 0C, [a]2Q

578 ~42° (c 1.7, 
MeOH)).14-15 From this point all the subsequent chemistry 
described was carried out on the racemic mixture and on both 
optical isomers. 

The amine 4 was converted to its trichloroethyl carbamate 
5 l l b (natural, mp 87-87.5 0C, [a]25

D -92° (c0.14, MeOH); 
racemic, mp 106-107.5 0C) with CCl3CH2OCOCl and 
aqueous Na2CO3. Replacement of the hydroxyl of 5 was ef­
fected with Ph3P, diethyl azodicarboxylate, and JV-hydroxy-
phthalimide to produce the phthalimidoxy ether 61 lc (natural, 
mp 117-118 0C, H2 5D -26° (c 0.56, MeOH); racemic, mp 
138.5-139.5 0C) with complete inversion.16 The Pht protecting 
group was removed (NH2NH2-H2O) and replaced with Cbz 
(PhCH2OCOCl in pyridine) giving 81 ld (natural, mp 90-91 
0C, [a]25

D -33° (c 0.2, MeOH); racemic, mp 82-85 0C) in 
80-85% overall yield. The trichloroethylcarbonyl protecting 
group was then removed from 8 (Zn, MeOH, MeSO3H) and 
replaced by Pht (0-CH3O2CPhCOCl,17 THF, Et3N) to give 
Cbz-Pht protected material 10 l l e (natural, mp 89-92 0C, 
[a]20578 -150° (c 0.68, MeOH)) in 75-80% yield. 

In devising our plans we had anticipated that oxidative 
cleavage of the double bond in 10 would produce a diacid which 

would then require further manipulation to produce cyclized 
materials. Thus we were pleasantly surprised to find that 
cleavage of 10 with NaIO4 in aqueous acetone containing 
catalytic quantities of RuCl3-xH2018a produced instead a 
mixture of two monoacids. These materials were the already 
cyclized products l l l l f (natural, oil, [a]20

578 -78° (c 2.0, 
MeOH); racemic, mp 115-116 0C) and 12"« (natural, oil; 
racemic, mp 160-162 0C), which could be separated chro-
matographically on CC-4 silica gel or better on pH 3 (phos­
phate) buffered silica gel. They were produced in a 4:1 ratio 
in over 85% combined yield.19'20 

Since we do not consider it likely that the predicted diacid 
cyclized under the reaction conditions, we postulate that the 
double bond is first oxidized to a dialdehyde or aldehyde acid'8b 

which may exist, at least partially, in the cyclized form (e.g., 
17) and it is this species which is oxidized to final product. 

Independent hydrogenolysis of 11 and 12 over Pd black gave 
the hygroscopic tricholomic acid phthalimide isomers 13 (ra­
cemic, mp 153-155 0C) and 14.21 These in turn were converted 
to their diphenyl methyl esters, 151 lh and 16,"' with diphen-
yldiazomethane.22 In practice it was found easier to carry the 
11-12 mixture through to 15-16 and separate chromato-
graphically at this point. The overall yield of 15 from 10 ob­
tained in this way was —35-40% and of 16 ~10%. 

The tricholomic acid derivative 15, which is a more readily 
deprotected analogue corresponding to the relay methyl ester 
3 described above, was chlorinated in the same manner to 18' 1J 
(natural, mp 178-179 0C) in 60-65% yield. 

Our initial deesterifications of 18 were conducted with HBr 
in nitromethane. This unexpectedly completely exchanged the 
chlorine for bromine in the time required to remove the di­
phenyl methyl ester (<5 min at 25 0C) to afford 191 lk (natural, 
mp 179-180 0C, H2 0S7 8 +70° (c 0.5, CHCl3)). 

This material was converted to the bromo analogue of AT-
125, 20,111 (NH2NH2-H2O; natural, [a]20

578 +1.67° (c 0.5, 
H2O), [A]2T6" +8900 ± 600, m/e 352 and 354 (M+ - 15 of 
bis(TMS) derivative in the normal manner)). Both 19 and 20 
show TLC mobilities extremely close to those of the corre­
sponding chloro compounds and they produce nearly identical 
NMR spectra. Further, the bromo analogue 20 shows signif­
icant antibacterial and antitumor activity compared with 
AT-125.24 

The desired AT-125 precursor 21 ' 'm was readily prepared 
from 18 by cleavage of the diphenyl methyl ester with HCl in 
nitromethane. This in turn was converted to AT-125 by 
treatment with hydrazine hydrate and crystallized from bu-
tanol-water.23 The aS, 5S isomer produced by this process was 
found identical in all respects, including biologically, with 
natural AT-125. The ent isomer ([(?]277

x -14 200 ± 900; NMR 
(D2O) 5 5.3 (m, 1 H), 4.17 (d, J = 4 Hz, 1 H), 3.61 ppm (d, 
J = 9 Hz, 2 H)) was also prepared. This material and the 
bromo analogue are currently undergoing further biological 
evaluation. 
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Photodisaggregation of Chlorophyll a and b Dimers 

Sir: 

We have recently demonstrated reversible unfolding of ex­
cited "dimers", formed by two covalently linked pyrochloro-
phyllide molecules, in benzene containing methanol.1 This 
structure, in which the two macrocycles are pinned by OH 
bridges between Mg of one unit and keto carbonyl of the 
other,2-5 shows characteristic absorption near 700 nm and is 
of special interest in view of proposals that it is a model for the 
reaction center, P-700, in photosynthesis.2'3 We now report 
related work on 700-nm-absorbing chlorophyll a and b dimers, 
formed by direct aggregation of monomers at low tempera-
ture.4-6"8 

At room temperature, chlorophyll a ( ~ 1 0 - 4 M) in dry 
methylcyclohexane containing 0.01 M methanol shows only 
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Figure 1. Absorption spectrum (curve a) and flash difference spectrum 
(curve b) immediately after laser flash (694.3 nm) excitation of chlorophyll 
0(1.1 X K r 4 M) in methylcyclohcxane-methanol (0.01 FvI) at - 78 °C; 
/ = 0.23 cm; the sample was deoxygenated by argon bubbling. Arrows 
indicate absorbance scales for curves a and b. 
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Figure 2. Flash profiles of chlorophyll a at 520, 660, 670, and 690 nm. The 
experimental conditions are as given in Figure 1. 1 indicates 10% change 
in transmission. Note composite time base. 

the monomer peak at 661 nm. At - 7 8 0 C, this is partially 
converted to dimer, absorbing at 695 nm (Figure la) . Flash 
photolysis using a 30-ns ruby laser pulse (694.3 nm)1 selectively 
excites and bleaches the dimer (Figures lb and 2). The initial 
difference spectrum (Figure lb) shows also smaller bleaching 
in the Soret region and positive transients at 670 nm and in the 
triplet region, 470-600 nm.9 These changes are completely 
reversible and correspond, at least semiquantitatively, to 
cleavage of a dimer to give triplet and ground-state units.1 We 
note that the nascent monomer band at 670 nm is distinctly 
different from the original monomer (662), indicating a dif-
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